
DEFINING FUNCTIONS
An Introduction to Computer Science

Let's learn about Defining Functions.

1

Defining Functions

You can create your own functions in Python.
In fact, this is one of the most powerful features of programming, the ability to create your
own functions.

2

Why Functions?

1. Code Reuse 2. Easier to debug

Why isn't this part
working? I'll extract it

into a function to test it.

I need to use this
multiple times! It

should be a function.

There are two major pragmatic advantages of functions:
First, they allow us to reuse a chunk of code in multiple places.
Second, they allow us to debug a chunk of code in isolation from the rest of the program.

3

Definition Syntax

def name(p1: int, p2: str) -> bool:

Define
Keyword

Function
name

Parameter
names

Parameter
types Return

type

Parentheses

Colon ColonComma

Parentheses

Colon

Dash and
Greater Than

Parameters

To create a new function, you use the `def` keyword, which stands for "define".
You write `def`, the name of the function, an open parentheses, each of the parameters
separated by commas, a closed parentheses, a dash, a greater than, the return type of the
function, and a colon.
The parameters need their variable names, a colon, and their parameter type.
This entire line is called the header.

4

Function Body

Indent with
4 spaces

def add(left: int, right: int) -> int:
return left + right

When you call a function, you are executing the code stored in the "Body" of the function.
Everything "inside" the body should be indented 4 spaces.
In the block version, this is shown visually with the bar on the left.
The body must be there - in other words, it cannot be empty.

5

Naming a function

1. Use verbs

1. Function names can only have
•Letters (abcABC)
•Numbers (123)
•Underscores (_)

2. Function Names must not begin with
•Numbers

Usually, you should use a verb as the name of the function.
The name helps other programmers understand what the function does.
Naming a function is just like naming a variable: you may only use letters,
numbers, and underscores, and it cannot start with a number.

6

Calling Your Functions

def add5(a_number: int):
return a_number + 5

add5(10)
add5(3)

15

8

After you've defined a function, you can use it by calling the function.
As we did before, we combine the name of the function with **calling parentheses**.
Note how we still pass in **arguments**.
Here we call the function `add5` twice, first passing in the argument 10
and then the calling it again with the argument 3.

7

Parameters

def subtract(first: int, second: int) -> int:
return first - second

subtract(3, 8)
subtract(-2, 5)
subtract(10, 10)

When you define a function, you can choose to add in **parameters**
to the header.
These parameters will take on the value of the arguments when the f
unction is called.
This can be very tricky to understand.
Each argument exactly matches one parameter.
In the code below, the parameter `first` will match to 3, -2, and -
10.
The parameter `second` will match to 8, 5, and 10.
Remember, each function call happens one after the other.

8

Parameters and Types

Parameter
type

Parameter
type

These must match
the parameter types!

These must match
the parameter types!

def get_speed(distance: int, time: int) -> float:
return distance / time

get_speed(6, 2)
get_speed(3, 8)

In modern Python, we can specify the type of each parameter.
So far, we know of five types: int, str, float, bool, and None.
Any time you call that function, the arguments must match the type of the parameter.

9

Return

def area(length:int, width:int) -> int:

return length * width

Return
statement

Return
type

Arrow

We describe what type of value the function returns using the arrow and a type in the
header.
But note that it is the **return statement** that actually makes a value
get returned; the header just describes what should be returned.

10

Calling and Printing

def area(length:int, width:int) -> int:
return length * width

print(area(3, 4))

area(1, 8)

print(area(5, 2))

Prints 12

Calculates 8 but does not print!

Prints 10

When you call a function, a value is always returned.
Even if you forget the return statement, the special value `None` w
ill be returned.
If you are writing code in the console, then you will see any non-
`None` values appear.
But if you are writing code in a regular editor, the value will not
appear in the console unless you use `print`.
We will sometimes print the result of calling a function, but remem
ber
that printing is not necessary to call a function.

11

Pass

def func(abc: bool)->str:

pass

The "pass" means
"do nothing"

Nothing there!

Sometimes, we want to define a function without writing its body just yet.
We use a special statement named "pass" to fill in the body until we're ready to write it.
Pass is a very special statement: it does absolutely nothing but take up space, telling the
computer to "pass over" this line.
Since we always have to have a body, if we didn't put the word pass there, Python would
crash with a syntax error.

12

