
SCOPE
An Introduction to Computer Science

Let's learn about Scope.

1

Scope

•"Lifetime"

•"Visibility"

•"Availability"

"How long the variable is available"

In a program, the **scope** of a variable indicates how long that v
ariable is available.
This is also known as the "lifetime" or "visibility" of a variable.

2

Global Scope

print("Starting program")

grade = 64

grade = grade + 5

print("Grade:", grade)

grade

is now
available

Variables defined at the top level are known as global variables.
Once a variable is defined, it is available on subsequent lines.
That variable lives until the end of the program.

3

Local Scope

The local variables are
grade, weight,

curved, and final

def calculate_grade(grade:int, weight:float)->float:
curved = 100 * grade ** .5
final = curved * weight
return final

calculate_grade(90, .1)

Each function has its own local scope.
Variables defined as parameters or within a function live until the
function ends.

These are local variables.
Variables defined in one function's are not available outside the f
unction.
This simplifies the reading of any function -
you only need to worry about
things defined in the function itself.

4

Returning Values
Functions return values, not variables!

def get_grade(points:int, possible:int)->float:
grade = points / possible
return grade

my_grade = get_grade(70, 100)
print(my_grade)

The local variables
grade, points, and
possible all die after
the return statement.

Functions return values, not variables.
This is so important, I'm going to say it again:
functions return values, not variables.
A variable has a value, so when you write a statement like the one
shown, you are returning the variable's value, not the variable its
elf.
The variable disappears after the function ends, so returning the v
alue
is the only way to make it available.

5

Same Named Variables

def add1(number:int)->int:
total = number + 1
return total

total = 3
total = add1(total)
answer = 5
answer = add1(answer)

The local variables of add1 are
number and total

The global variables are
total and answer

The local total and global
total are different variables

Beginners will sometimes try to reuse a variable name
Any global variables with the same name are actually unrelated to t
he
variable inside the function.
On this slide, I have drawn squares around local variables, and cir
cles
around global variables.

6

Global Variables Are Bad

Complicated!

from cisc108 import assert_equal

my_title = "Lord "
def add_title(name: str) -> str:

titled_name = my_title + name
return titled_name

assert_equal(add_title("Bart"), "Lord Bart")
my_title = "Dr. "
assert_equal(add_title("Bart"), "Dr. Bart")

It is technically possible to read a global variable inside a funct
ion.
However, you should not do so.
Every time you refer to global variables, your program becomes more
complicated
and you have to think about multiple levels of scope.

In this code example shown here, the unit tests would fail if we sw
apped
the order of the last two lines.
This may work out okay in smaller programs, but causes huge problem
s as you
start writing longer programs.
Whenever you feel the urge to use a global variable, stop and recon
sider.
The only exception is if you are 100% certain that the global varia
ble's value
will stay constant and never change.

7

Scope Rule of Thumb

•Variables INSIDE a local scope should
not be used OUTSIDE that scope

•Variables OUTSIDE a local scope should
not be used INSIDE that scope

Here is a simple pair of rules for working with scope:
Variables inside a local scope should not be used outside that scope.
Variables outside a local scope should not be used inside that scope.
Keeping these two rules in mind will avoid many headaches.

Okay, are Global Variables really bad? Let's discuss further:
http://wiki.c2.com/?GlobalVariablesAreBad

8

