
DATA FLOW
An Introduction to Computer Science

Let's learn about Data Flow.

1

Scope and Values

Reminder of rules:

1. Variables inside a function cannot be used outside

2. Variables outside a function should not be used inside

3. Function return values, not variables

Previously, we learned about scope: the idea that variables inside a function
cannot be used outside of the function, and variables outside a function
should not be used inside the function.
Further, we learned that functions do not consume or return variables;
instead they consume and return values.
These ideas are critical in understanding how data flows through a program.

2

Data Flow

64

-4.0

Function call

Function call

"Klaus"

64

score
user_name

You can think of a program as a flowing, twisting river.
Regular execution makes the river flow south, but functions disrupt this flow.
Along the way, values are carried by the current.
At times, we give these values names by using variables, but it is the values that flow
through the program, not the variables.

3

Substitution

def add(left, right):
return left + right

5 + add(3, 4)7

When you call a function, each parameter is assigned the value of a relevant argument.
When you return from a function, the function call is substituted for the returned value.
These are the only tools we should use in Python to move data around a program.
This is just like what happens when you use an operator like plus or minus.
Even though we do not see the substitution visually, it still happens.

4

Call Frame

def add_period(text: str) -> str:
result = text + "."
return result

message = "Hello world"
add_period(message)

Frame: add_period

Frame: Global

text: str

result: str

message: str

Each time we call a function, we say that its local variables are i
nside their
own scope.
We will also call this scope the **frame**, and it can be used to s
how
the current variables and their values.
Notice that the global frame is separate from the local frame.

5

Data between Functions

These lines actually
move values

between functions!

These variables are
distinct from the
ones below with
the same name!

def calculate_grade(raw, weight):
grade = 10 * (weight+raw) ** .5
return grade

def make_grade_message(grade):
return "Your grade was:" + str(grade)

raw = 45
weight = 5
grade = calculate_grade(raw, weight)
message = make_grade_message(grade)
print(message)

To move data from one function to another, you cannot just look at the two functions.
You must also look at where the functions were called.
The returned value of one function should be fed into the next function.

6

Functions Calling Functions

def add5(number: int) -> int:
result = number + 5
return result

def double_and_add5(value: int) -> int:
answer = 2 * add5(value)
return answer

final = double_and_add5(7)

Frame: add5

number: int

result: int

Frame: double_add5

value: int

answer: int

Frame: Global
final: int

Things get even more complicated when functions call other function
s, but
this happens all the time.
We are used to calling built-
in functions, but we can call our own functions too.
When we call a function inside another function, we **stack** the n
ew function
call's frame on top of the current frame, with the top frame being
the current scope.

When a function call ends, we remove that top stack and return to t
he one below it.
Each function call's frame is separate from all other frames, even
if they
come from the same function.

7

