
DICTIONARIES
An Introduction to Computer Science

Let's learn about Dictionaries.

1



Dictionaries

Aardvark ➔ A nocturnal burrowing mammal with long ears, a 
tubular snout, and a long extensible tongue, 
feeding on ants and termites.

Able ➔ having the power, skill, means, or opportunity to 
do something.

About ➔ on the subject of; concerning.

… ➔ …

Dictionaries are one of the most flexible and useful data structures in programming.
The idea of a dictionary is that they map from keys to values.
Think of it like an actual dictionary: given a word, you can look up its definition.
This lookup has a large number of applications.

2



Dictionary Literals

{

"A key": "A value",

"Another Key": 5,

7: True

}

Curly 
brace

Key ValueColon

Comma

Any number of 
key-value pairs

The syntax for a dictionary literal begins with a pair of curly braces.
Inside of those braces, you will find key/value pairs separated by commas.
Each key is separated from its value with a colon.
The key and the value can be any expression, but are often literal values.
Although not required, each key-value pair is often placed on its own new line.

3



Keys

{ "Key": "Value" }

The keys of a dictionary are what we use to look up information.
The keys of a dictionary are unique.
Typically, the keys will be of the same type, although this is not a requirement.

4



Keys

{ "Key": "Value" }

Each key is mapped to a value.
With the appropriate key, we can get a desired value.
Values do not have to be unique, unlike keys.
Like keys, the values can be of any type, even if they are not the same.

5



Dictionary Access

my_dictionary = {"A key": "A value",

"Another Key": 5,

7: True}

my_dictionary["A key"]

Dictionary KeySquare 
bracket

Square 
bracket

The values of a dictionary can be retrieved using dictionary access.
Another similarity between lists and dictionaries is how both use square brackets.
With lists, we used numeric indexes to access elements.
With dictionaries, we use the keys.
Often, the keys will be strings, so often we will see strings inside the square brackets.

6



Lookups

>>> pets = {"Klaus": "dog",

"Pumpkin": "cat",

"Wrex": "hamster"}

>>> pets["Klaus"]

"dog"

>>> pets["Spot"]

>>> pets["dog"]

KeyError!

KeyError!

When we perform dictionary access, we give a key, and the dictionary access expression is 
replaced with the corresponding value.
If the key is not in the dictionary, a "KeyError" is raised.
A common mistake is to use a value instead of a key, which will also cause a "KeyError".

7



Not Always Strings

>>> levels = {3: "High",

2: "Medium",

1: "Low"}

>>> levels[2]

"Medium"

>>> levels[0]

>>> levels["High"]

KeyError!

KeyError!

Sometimes keys will be strings, but it turns out that anything can be a key.
If a dictionary maps integers to strings, for instance, then the keys will be integers.
In fact, it is possible for a dictionary lookup to appear just like a list lookup!

8



Dictionary Type

def make_ratings(ratings: [int]) -> {str: int}:

return {

"dog": ratings[0],

"cat": ratings[1],

"rat": ratings[2]

} Produces a dictionary 
mapping string keys 

to integer values

Consumes a list 
of integers

When you define a function that consumes or produces a dictionary, we need to specify 
the type.
If we don't know anything specific about the dictionary's keys and values, we can use the 
the `dict` type.
However, if we know that the dictionary maps, say, strings to integers, then we can use a 
dictionary as the type.
The function shown here uses a list of integers to produce a dictionary that maps string 
keys to integer values.

9



Terminology

•Dictionary

•Map

•Table

•Hash

Mostly the same thing!

A final minor note about dictionaries: dictionaries are also sometimes known as maps, 
tables, or hashes.
Although there are subtle differences in this terminology, the idea is still roughly the same 
each time.

10


